[bookmark: _ctgktdt2pagu]Accessibility Assessment Automation Testing using Selenium & HTML Code_Sniffer

Introduction & Importance of Automation during Assessment of Accessibility

Accessibility Assessment Automation is a piece of code which can evaluate the web controls on a web page for Accessibility. Accessibility Assessment Automation tools are useful because they can save significant amount of time. The larger the site or complex the layout, more chance to missed the defects by manual testing. So accessibility automation can be used as a good way to generate a list of accessibility issues. There are various errors which can be caught by automation tool and do not need human inspection. For e.g. In case where images do not have alt text at all, it is efficient way to document each instance one by one when an automatic means of finding is available. As in our project, there were lots of content to test, so it was a good approach to use automation. It speeded up our task and make more efficient and optimize. The use of a good automated tool can mean significant improvement in productivity and accuracy of results.
In the starting of our project we were doing completely manual Assessment of Accessibility. But later we realised that some of the portion can be automated that will really save our time. We had many challenges with Heading structure, Images alt text, Form fields association and Table header missing issues in the application hence we thought to automate this part.
We did some research with many tools in the market and found that HTML Code_Sniffer can help us out in achieving Accessibility Assessment Automation with some coding with Selenium/Java.
The best part of this initiative was that everything was available free in the market hence we did not face much challenge to convince our client for Accessibility Assessment Automation.
[bookmark: _frkqbb8d3f26]In this blog we will take you through that how we achieved Automation in Accessibility Assessment.

[bookmark: _tuzvu1rpfz7u]Tools used in Accessibility Assessment Automation

[bookmark: _x1kd80u5k5bi]We used below tools for our Accessibility Assessment Automation
· Selenium-WebDriver
Selenium is a popular open-source web based Automation tool. It provides more stable approach in automating the browser. More can be find on Selenium Web Site (http://docs.seleniumhq.org/docs/03_webdriver.jsp). We used Selenium web driver to login the application and invoking the HTML_Code Sniffer on Web Page.
· TestNG Framework
TestNG is a testing framework which is used with Selenium WebDriver. We used TestNG Framework for different type of annotations and generate various type of Reports (e.g., Test output Report,)
· Java
Java is used for scripting language, it is used with Selenium WebDriver to login the application and inspect the web controls on the web page.
· Eclipse
We used Eclipse IDE (an editor) to write the code using scripting language Java.
· [bookmark: _z9hbbfasqjxs]HTML Code Sniffer
The backbone of our Accessibility Assessment Automation Process. You can simply drag it from ‘http://squizlabs.github.io/HTML_CodeSniffer/’ and it will be added to your Bookmark. Just do it, later we will tell you how we utilized the power of this tool in our Accessibility Automation process. HTML_CodeSniffer is a Client Side Java Script which can check HTML code and detect WCAG 2.0 A/ AA/ AAA or Section 508 violations. For more information please visit HTML_CodeSniffer. We did not invoke it from bookmark rather called the HTML Code_Sniffer Java Script in Selenium code. You will see it in the later section of this blog.
[bookmark: _1mkznw7xm0y0]Accessibility Assessment Automation Process (How It Work)
Below steps will help you out to understand the Accessibility Automation using Selenium WebDriver and HTML_CodeSniffer. This Automation Process completes in two steps :
[bookmark: _75wetgs35wwc]
· [bookmark: _ycvp3qpuyr30]Generate the Automation Report

· [bookmark: _ytcrejz0ntf9]Fetch the URLs and update in Excel sheet - (Excel Creation)
[bookmark: _qo0vuvu98xpi]Fetch the URLs that you want to test in your application. We fetched the URL’s manually but any tool can be used (e.g., Sitamp). Our Automation Framework is Test Data Driven, so we need to update all the URLs in Excel sheet as per pre-defined format.
We created workbook named as DataProvider.xlsx with two sheet as ‘ApplicationLogin’ & ‘ApplicationInfo’. First sheet contain the login credential of the application on which Accessibility Assessment need to be performed. Second sheet contain the URL of the page and Accessibility Standards that need to be tested against the application. Yes, means that Automation process will test that standard against the application.
[image:]
[image:]
· [bookmark: _awucmjpyt5oy]Open the Page in browser - (Selenium Script)
[bookmark: _8nhkmgl7kivn]Script will help in logging into the application in the browser. After which It will pick the first URL from the Excel sheet and redirect to that url in the browser. Now the desired page is opened in the browser in which we want to identify the Accessibility issues.

Selenium Code Snippet
/* Open the browser in Firefox*/
public static WebDriver methodForFirefox() throws Exception
{
		driverForApplication = new FirefoxDriver();
		driverForApplication.manage().timeouts().implicitlyWait(30, TimeUnit.SECONDS);
		driverForApplication.manage().window().maximize();
		return driverForApplication;
	}

Selenium Code Snippet
/*Login to the Application */
public static WebDriver methodForFirefox() throws Exception
{
 	driverForApplication = new FirefoxDriver();
 	driverForApplication.manage().timeouts().implicitlyWait(30, TimeUnit.SECONDS);
 	driverForApplication.manage().window().maximize();
 	return driverForApplication;
}
Selenium Code Snippet
/* this method is used to navigate to urls mentioned in data sheet(DataProvider.xls) */
public void navigateToURL(String pageUrl) throws AutomationException
{
	driver.get(pageUrl);
	logger.info("Page is navigated to : " + pageUrl + " and waiting for 10 seconds to load all Web Elements");
		try {
			Thread.sleep(10000);
		 } catch (InterruptedException e)
{
			throw new AutomationException(e.getMessage(), e);
		}
}
· [bookmark: _2qifw0bcabei]Invoke ‘HTML Code Sniffer’ - (Selenium Script)
[bookmark: _8f6lyihjembj]Yes, our iron man is ready to dig the application. Invoke the ‘HTML Code Sniffer’ Java script. Select the guidelines from Standard drop down. It shows Errors, Warnings and Notices category. So through the script and Excel sheet configuration, errors or warnings or both can be taken into consideration. In our Automation process we coded selenium script and configured our Excel sheet in such a way that any of them or both can be taken.

Selenium Code Snippet
 /* this method is used to invoke HTML Code Sniffer on opened url */
((JavascriptExecutor) driver).executeScript("javascript:(function() {var _p='//squizlabs.github.io/HTML_CodeSniffer/build/';var _i=function(s,cb) {var sc=document.createElement('script');sc.onload = function() {sc.onload = null;sc.onreadystatechange = null;cb.call(this);};sc.onreadystatechange = function(){if(/^(complete|loaded)$/.test(this.readyState) === true){sc.onreadystatechange = null;sc.onload();}};sc.src=s;if (document.head) {document.head.appendChild(sc);} else {document.getElementsByTagName('head')[0].appendChild(sc);}}; var options={path:_p};_i(_p+'HTMLCS.js',function(){HTMLCSAuditor.run('WCAG2AA',null,options);});})();");
/*this method is used to select WCAG Standard and total count for Error and Warning */
logger.info("Selecting technique WCAG2AA.");
selectStandard(2); //Select WCAG Technique from Excel sheet notation for which WCAG2AA is set as ‘Yes’
int totalWarning = 0;
if (!sliderStatusDisable) {
totalWarning = Integer.parseInt(warningCount.getText());
}
int totalError = Integer.parseInt(errorCount.getText());
int errorCountInt = totalWarning + totalError;
logger.info("Total Error count is : "+errorCountInt);
logger.info("Clicking on View Report.");
viewReport.click();
for (int i = 1; i < errorCountInt + 1; i++) {
if (vrFirstPage.isDisplayed()) {
	issueTitle.click();
	Thread.sleep(1000);
	summ = titleSummaryText.getText();
	tech = techniqueText.getText();
	tecHerf = techniqueText.getAttribute("href");
	techAndUrl.put(tech, tecHerf);
	cs = codeSnippentText.getText();
	errorWar = isErrorWarning.getAttribute("title");
					
	} else {
	int k = i - 1;
	logger.info("Move to next Error/Warning ----> " + k);
	reportNextButton.click();
	Thread.sleep(1000);
	summ = driver.findElement(By.xpath("//li[@id='HTMLCS-msg-detail-" + k + "']/div[1]/div")).getText();
WebElement prinTechs = driver.findElement(By.xpath("//li[@id='HTMLCS-msg-detail-" + k
	+ "']/div[1]/div[2]"));
	List<WebElement> tech1 = prinTechs.findElements(By.tagName("a"));
	for (int j = 1; j < tech1.size(); j++) {
	techAndUrl.put(tech1.get(j).getText(), tech1.get(j).getAttribute("href"));
	}
errorWar = driver.findElement(By.xpath("//*[@id='HTMLCS-msg-detail-" + k + "']/div[1]/span")).getAttribute("title");
}
//This is the snapshot how HTML_CodeSniffer looks after evaluating the Errors and Warnings count
[image:]
· [bookmark: _be8orlbyx7z1]Create Automation Report - The bug Report (Selenium Script)
[bookmark: _f0z9rditlc6d]As you saw we have already invoked HTML Code_Sniffer and it started finding the issues. Our Selenium code/script fetches the defect information (Issue Summary, Principle, WCAG technique, Code Snippet) from HTML Code_Sniffer and put into Automation Report simultaneously. Automation Report was a single workbook in which multiple worksheets were created (based on number of Page URLs that we needed to test). This excel Report contain fields like Summary, Page URL, Page Number, Technique's, Success Criteria.
/ * To generate Automation report */
ReportExcelFormat.setCellData(i + rowCount, summ, errorWar, techAndUrl, cs, "WCAG2AA", ApplicationInfo.pageUrl, ApplicationInfo.pageNumber,screenshotName);
techAndUrl.clear();
summ=null;
if (i == errorCountInt) {
rowCount += errorCountInt;
logger.info("Clicking on Code sniffer Home Icon.");
codeSnifferHomeIcon.click();
Thread.sleep(3000);
}
· [bookmark: _o22ut2pt9zzr]Mail to the user(optional) - (Selenium Script)
[bookmark: _ijbvl822ab3u]After generating the Automation report in previous step, an e-mail can be sent to
		users.
/* Below code Mail the generated report to the user */
public void sendReportMail() throws AutomationException {
try {
		Thread.sleep(5000);
		if(!ReportExcelFormat.allAttachments.isEmpty()){
		DateFormat format = new SimpleDateFormat("MMM-dd-yyyy_HH:mm:ss");
		String timeStamp = format.format(new Date());
		logger.info("Sending mail to all users");
		ApplicationMailMonitoring applicationMail = new ApplicationMailMonitoring();
		applicationMail.sendMail(ApplicationMailConfig.server, ApplicationMailConfig.from,
		ApplicationMailConfig.to, "Application " +ApplicationMailConfig.subject
		+ BrowserOsDetails.getOSName() + " "	+ ReportExcelFormat.browsersWithVersions + " ==>"		+ timeStamp, K12MailConfig.messageBody);
		logger.info("Successfully Sent Automation report mail to Users ");
		}else{
		logger.info("No Attachment is present.");
		}
		} catch (InterruptedException | MessagingException me) {
		logger.warn(me.getMessage());
		throw new AutomationException(me.getMessage(), me);
		}finally{
		System.exit(0);
		}
	}
· [bookmark: _dmb3qma9c5ec]Log the issue in JIRA

· Log issues in JIRA
After generating the Automation Report (Bug report), our aim was logging these issues in JIRA. We achieved this through Jersey Client. This API helps to create issue in JIRA using JSON Object.
/*Log issue in JIRA */
public static boolean createIssueInJira(String screenshotName, String summay, String pageUrl, String primaryTechnique1, String groupName) throws AutomationException, UniformInterfaceException, ClientHandlerException, JSONException {
try
{
		Client client = Client.create();
		client.addFilter(new HTTPBasicAuthFilter(getJiraUserName(), getJiraPassword()));
		WebResource webResource = client.resource(jiraURL + "/jira/rest/api/2/issue/");
		ClientResponse response = webResource.type("application/json").accept("application/json").post(ClientResponse.class,
createIssueMetaData(summay, pageUrl, primaryTechnique1, groupName));
		int status = response.getStatus();
		String output = response.getEntity(String.class);
		//System.out.println(output.toString());
		if (addAttachmentToIssue(getIssueKey(output), screenshotName))
			logger.info("Attachment is added successfully to issue.");
		else
			logger.info("Attachment is not added.");
			return true;
		} catch (IOException e){
			throw new AutomationException("Issue is not Created in JIRA.");
		}
	}
[bookmark: _qs3xitgix8g]Limitations
There are some limitations in the Automation Accessibility process as well , some of the cases can not be verified.
	Elements
	Limitations

	Images
	Process can not verify that if the Alt text is meaningful or not, manual intervention will be needed to judge it

	Logical Reading order
	Logical order can not be judged by the code, manual intervention will be needed.

	Navigation/ Keyboard
	Keyboard navigation can not be verified by the automation process, manual intervention will be needed.

	Headings
	Process cannot verify that which text should be heading.

	Form Error/ Warning Message
	Process can not verify that error and warning and handled in the application or not

	Table Header
	If <TH> is not present in the table this can not be verified by the process.

	Table Association between header and Cells
	Process can not verify the association between <th> and <scope>

	Table used for layout purpose
	If the table is used for Application page layouting purpose, this can not be verified by the automation process

	Special Characters e.g. Sigma, Math Operators, Chemistry Formula, Math Equations can be read by Screen Reader.
	Some of the special Characters can not be read by screen reader, Automation process can not verify this.

Before concluding our blog we would like to say Although we achieved 29-30 % Automation but Accessibility Assessment Automation process helped us a lot to achieve good quality and delivering the Accessibility testing on time. It saved a lot of time of logging bugs in JIRA. Most of the straightforward bugs were logged directly through automation and we put manual effort in logical bugs in which pure manual intervention required.
Hope this will help you to understand the Accessibility Assessment Automation process we did in our project. Beautiful part of our Accessibility Assessment Automation process is that you can use it for any type of application as coding is application independent. We some little modification/changes it can be used for any type of application.
image4.png
BY sauz.

‘Standards:

Selectine types of issues to include in the report

View Report

image6.png
- T

login_YES Login URL Test Test123

B
6
7
i«

W <3| ApplicationLogin ./ Appicationinfo /3

image5.png
C

2 Yes _|LognPage Login Page URL no no [yes no [ves [ves
3 No [Home Page Home Page URL no no lyes no [ves No
W 4 » »| ApplicationLogin | ApplicationInfo .~ ¥3 | M

